Atomic-Scale Simulations in the Nanoscience of Interfaces

Kristen A. Fichthorn
Departments of Chemical Engineering and Physics
The Pennsylvania State University
University Park, PA 16802
USA
We Care About Including Relevant Atomic-Scale Details into Macroscopic Models (that might be) Relevant for Engineering Design
The Challenge: Predicting Assembly from First Principles

Solid-State Systems
- Energy Dominates
- DFT Enables Detailed Understanding
- Rare-Event Dynamics
- Theory Developed

Molecules on Surfaces
- Entropy Plays a Role
- DFT Not As Good, Sampling!
- Rare-Event Dynamics, Hydrodynamics
- Some Theory

Nanoparticles in Solution
- Entropy Plays a Big Role
- DFT is Limited, van der Waals, Sampling!
- Some Rare-Event Dynamics, Hydrodynamics
- Macroscopic Theories

Most Problem We Work on Have a Fluid Near a Solid Surface….

Two Examples:

Forces and Assembly of Colloidal Nanoparticles

Nanostructured Interfaces from First Principles
Nanostructured Surfaces from First Principles

Non-Equilibrium Kinetics + Interactions =

Ag/ 2 ML Ag / Pt(111)

InAs/GaAs(001)

Al / Al(110)
F. Bautier de Mongeot et al., PRL 91, 016102 (2003).

....And More!!!
Surface Phenomena Involve Multiple Length and Time Scales...

Thin-Film Growth
e.g. fcc(110)
homoepitaxy

Also Crystal Growth,
Catalysis at Surfaces
and More...

Atoms Hopping (Å, ps)

Hut Formation (nm, min)

Hut Organization (µm, min)

Challenge: Reactor Design from First Principles

Example: Growth of GaAs Thin Films

Charge-Density Contours for GaAs(001) from Density-Functional Theory (Å)

Kinetic Monte Carlo Simulation of Growth of GaAs(001) (nm, s)

Continuum Equations for Fluid Flow, Heat Transfer, Mass Transfer, Kinetics in a Rotating Disk Reactor (m,h)

Transition-State Theory

Kinetic Monte Carlo Simulations

- Deposition, F
- Aggregation
- Nucleation
- Terrace Diffusion, D
- Edge Diffusion

Concerted Cluster Diffusion Mechanisms
Difficult to Characterize and Include in kMC...

R. Miron & K. Fichthorn,
“Electronic” Pair Interaction on Ag/Pt(111): Still New Frontiers...

\[E_0^b = 52 \text{ meV} \]
Challenges in Multi-Scale Modeling

• Accurate Semi-Empirical Potentials
• Efficient Algorithms for Finding ALL TST Rate Processes
• “Stiff” Systems
• Length and Time Scale of KMC
• Atomic – Continuum Link
Challenges in Multi-Scale Modeling

- Accurate Semi-Empirical Potentials
- Efficient Algorithms for Finding ALL TST Rate Processes
- Incorporating TST Rates into KMC
- “Stiff” Systems
- Appropriate Atomic Detail in Continuum Reactor Design
Co/Cu Heteroepitaxy

Promising for “spintronic” recording media

Interesting heteroepitaxial growth modes
ab initio kMC of Submonolayer Co/Cu(001) Heteroepitaxy

Spin-Polarized, FP-LAPW DFT For Energy Barriers.....

- Hopping / Exchange of Co & Cu Adatoms
- Cu Hopping Away from Exchanged Co
- Co Hopping Away from Exchanged Co

Experiment

- Co Grows on Top of Cu
- Co Trapped at Exchanged Co
- Co, Cu Escape from Exchanged Co

Tight Binding Potential Fit to DFT

Based on potential by Levanov et al.,

<table>
<thead>
<tr>
<th>Structure</th>
<th>TBSMA</th>
<th>TBSMA</th>
<th>DFT</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(001)</td>
<td>0.55</td>
<td>0.58</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Co(001)</td>
<td>0.79</td>
<td>0.82</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Co/Cu</td>
<td>0.99</td>
<td>1.12</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Co/Cu alloy</td>
<td>0.90</td>
<td>1.03</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>Cu/Co/Cu</td>
<td>0.73</td>
<td>0.87</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Co/Co/Cu</td>
<td>0.73</td>
<td>0.78</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Cu/2Co/Cu</td>
<td>0.66</td>
<td>0.72</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>TBSMA</th>
<th>TBSMA modified</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/Cu hop</td>
<td>0.44</td>
<td>0.48</td>
<td>0.51</td>
</tr>
<tr>
<td>Cu/Cu exchange</td>
<td>0.87</td>
<td>0.92</td>
<td>1.02</td>
</tr>
<tr>
<td>Co/Co hop</td>
<td>0.58</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>Co/Co exchange</td>
<td>1.32</td>
<td>1.48</td>
<td>1.54</td>
</tr>
<tr>
<td>Co/Cu hop</td>
<td>0.67</td>
<td>0.63</td>
<td>0.61</td>
</tr>
<tr>
<td>Co/Cu exchange</td>
<td>0.89</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>Co/Cu step</td>
<td>0.42</td>
<td>0.39</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Accelerated Molecular Dynamics (Hyperdynamics)

\[k_{TST, A \rightarrow B} = \nu \frac{\int \delta(R - R_B^*) \exp(-V(R)/k_BT)}{\int \exp(-V(R)/k_BT)} \]

\[k_{TST} = \nu \frac{\int \delta(R - R_B^*) W(R) \exp(-V(R)/k_BT)}{\int W(R) \exp(-V(R)/k_BT)} \]

\[W(R) = \exp \left(\frac{V(R) - V(R)}{k_BT} \right) \]

\[k_{TST} = \nu \frac{\int \delta(R - R_B^*) \exp(V(R)/k_BT)}{\int \exp(V(R)/k_BT)} \]

Accelerated Molecular Dynamics
(Hyperdynamics)

\[
\begin{align*}
 k_{TST,A \rightarrow B} &= \frac{k_{TST,A \rightarrow B}}{\langle 1/W(R) \rangle_A} \\
 k_{TST,A \rightarrow C} &= \frac{k_{TST,A \rightarrow C}}{\langle 1/W(R) \rangle_A} \\
 \frac{k_{TST,A \rightarrow B}}{k_{TST,A \rightarrow C}} &= \frac{k_{TST,A \rightarrow B}}{k_{TST,A \rightarrow C}}
\end{align*}
\]

Detailed Balance!
Accelerated Molecular Dynamics Challenge: How to Build $V(R)$ On The Fly?

Monitor Smallest Eigenvalue of Hessian Matrix - Expensive!

Monitor Changes in Single-Particle Or Total Potential Energy

Can’t Easily Define for Many-Body Interactions!

Fluctuations in Total Energy!

Monitor Changes in Single-Particle Energy
Accelerated Molecular Dynamics
The Bond Boost Method

- Local minima defined by bond lengths: $\{r_i^0\}_{i=1...N}$

- Transitions occur via bond breaking: $\max_i \left| \frac{\delta r_i}{r_i^0} \right| > q$

- Define bias potential

\[\Delta V\{x\} \sim A\{r_i\} \sum_{i=1}^{N} \delta V(r_i) \]
Overview of the Bond Boost Method

find local minimum
(conjugate-gradient minimization)

detect transition ...

MD on boosted PES
\[\delta t = \delta t_{\text{simulation}} e^{\beta \Delta V} \]

MD on boosted PES

detect transition, find new state
Diffusion on Cu(100): Elementary Processes

- Adatom hop
- Vacancy hop
- Dimer hop
- Adatom exchange
- Dimer exchange
The Bond-Boost Method: Diffusion on Cu(100)

Rates:

\[k = \frac{N_{\text{events}}}{\text{time}} = \Gamma_0 e^{-\beta E_A} \]

Prefactors \(\Gamma_0 \) (THz) and activation energies \(E_A \) (eV):

<table>
<thead>
<tr>
<th>Process</th>
<th>(\Gamma_0^{\text{boost}}) ((\times e^{\pm 0.7}))</th>
<th>(\Gamma_0^{MD}) ((\times e^{\pm 0.6}))</th>
<th>(E_A^{\text{boost}}) ((\pm 0.05))</th>
<th>(E_A^{MD}) ((\pm 0.04))</th>
<th>(E_A^{\text{static}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adatom hop</td>
<td>40</td>
<td>20</td>
<td>0.52</td>
<td>0.49</td>
<td>0.51</td>
</tr>
<tr>
<td>Adatom exchange</td>
<td>270</td>
<td>437</td>
<td>0.73</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>Vacancy hop</td>
<td>54</td>
<td>27</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
</tr>
<tr>
<td>Dimer hop</td>
<td>30</td>
<td>13</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>Dimer exchange</td>
<td>190</td>
<td>320</td>
<td>0.71</td>
<td>0.73</td>
<td>0.69</td>
</tr>
</tbody>
</table>

\(\text{boost} \) accelerated MD at \(T = 230 - 600 \) K

\(MD \) regular MD at \(T = 650 - 900 \) K → Boisvert, Lewis Phys. Rev. B 65 (1997)

Rare Events and the Small Barrier Problem

Co on Cu(100) surface with tight-binding (TBSMA) potential

TST barriers:
\[\Delta E^\dagger = 0.66 \text{ eV} \text{ for isolated adatom hop} \]
\[\Delta E^\dagger = 0.86 \text{ eV} \text{ for isolated adatom exchange} \]

Annoyingly Small Barriers

\[\Delta E^\dagger = 0.2 \text{ eV} \]
10^6 faster (\(T = 350K\)) than isolated hop

\[\Delta E^\dagger = 0.1 \text{ eV} \]
10^8 faster (\(T = 350K\)) than isolated hop
State-Bridging Accelerated MD to Solve the Small-Barrier Problem

Fast Motion in a Group of Recurrent States Connected by Small Barriers
State-Bridging Accelerated MD to Solve the Small-Barrier Problem

Fast Motion in a Group of Recurrent States Connected by Small Barriers: The Maximum Boost is Limited
State-Bridging Accelerated MD to Solve the Small-Barrier Problem

Consolidate Groups of Recurrent States Connected by Small Barriers into One Big State

Ignore the Dynamics and Achieve a High Boost

Overview of State-Bridging Accelerated MD

Commence With a Low Boost

Detect Barriers When Transitions Occur, Compare To Threshold

Raise the Boost After A Waiting Time

Memorize and Consolidate Pairs of States Connected by Low Barriers

Benefits of State Bridging

State-Bridging Accelerated MD

Regular Accelerated MD
Thin Film Growth at 250 K, F = 0.1 ML/s

Note Cluster Mobility
Island Density vs. Coverage from Accelerated MD
Cluster Mobility Reduces Island Density

At $T = 250K$: $N_x^{MD} \approx 0.7 N_x^{KMC}$

Mean-field theory: $N_x^{\text{adatom+dimer}} \approx 0.74 N_x^{\text{adatom}}$

† Pentcheva et al., PRL 90 (2003).

Growth Approaching Multi-Layers: Monolayer or Bilayer?

F = 0.03 ML/s
Bilayer for T = 80-300 K

T = 330 K
Monolayer for F = 0.003 ML/s
Bilayer for F = 0.3 ML/s

Monolayer: Low F / Medium T
Bilayer: High F / Low T
State-Bridging Accelerated MD of Co/Cu(001) Heteroepitaxy: $T = 250$ K, $F = 0.1$ ML/s, $\Theta = 0.54$ ML

MD Simulations were run for 5.4 s

Mechanism of Bilayer Island Formation
When an atom is pulled up, it stays there!

Interlayer transport barriers:

downward:

\(\Delta E^\dagger = 1.1eV \)
\(\Delta E^\dagger = 0.62eV \)
\(\Delta E^\dagger = 0.92eV \)

upward:

\(\Delta E^\dagger = 0.68eV \)
\(\Delta E^\dagger = 0.63eV \)
Flux Dependence of Bilayer Formation

Fractional filling at $T = 310K$, $\theta = \theta_1 + \theta_2 = 0.42 \text{ ML}$

- Small, Irregular Islands Grow Bilayer
- Large, Smooth Islands Grow Monolayer

\[\frac{\theta_2^{1\rightarrow 2}}{\theta_2} = 0.35 \]

\[\frac{\theta_2^{1\rightarrow 2}}{\theta_2} = 0.37 \]

\[\frac{\theta_2^{1\rightarrow 2}}{\theta_2} = 0.4 \]
Conclusions

• Simple and Efficient Accelerated MD With the Bond-Boost Method

• Accelerated MD Lets Us Find Complex Kinetic Mechanisms AND Simulate Experiments

• Cluster Diffusion Influences Island Density

• Origins of Monolayer vs. Bilayer Island Growth in Co/Cu(001) Epitaxy
Nanoparticles: Potential Building Blocks For New and Existing Materials...

• Catalysts
• Optical Materials
• Structural Materials
• Electronic Materials

... but Difficult to Assemble or Disperse Nanoparticles.

C. Keating, Penn State Chemistry

Nano-Electronics: Replace Lithography by Self-Assembly?

Nanoparticle Forces are POORLY UNDERSTOOD!
Colloidal Forces from Molecular Dynamics Simulations

- van der Waals and Electrostatic Forces: DLVO theory
- Solvation Forces: Solvent Ordering
- Depletion Forces: Entropic

How Do These Work for Colloidal Nanoparticles?
Parallel Molecular Dynamics Simulation

- Solid Nanoparticles in Liquid Solvent (~ 10^5 Atoms):

 Lennard-Jones: \(\rho^* = 0.7, \ T^* = 1.0 \)

 \(n \)-Decane: \(\rho = 0.7729 \text{g/ml}, \ T = 293.15 \text{K} \)

\[
U_{\text{intra}}(r) = \sum_{i=3}^{n} U_b(\theta_i) + \sum_{i=4}^{n} U_t(\phi_i) + \sum_{i=1}^{n-4} \sum_{j=i+4}^{n} U_{LJ}(r_{ij})
\]

\[
U_b(\theta_i) = \frac{1}{2} k_b (\theta_i - \theta_0)^2
\]

\[
U_t(\phi_i) = \sum_{l=0}^{5} a_l (\cos \phi_i)^l
\]

- Solvophilic Nanoparticles: (\(\varepsilon_{fs} = 3.0, 5.0 \varepsilon_{ff} \))
- Solvophobic Nanoparticles: (\(\varepsilon_{fs} = 0.2 \varepsilon_{ff} \))
Model Nanoparticles

Probing the Size and Shape Dependence of Forces

Small Sphere
d = 4.9 \sigma
64 atoms
~1.7 nm

Large Sphere
d = 17.6 \sigma
2048 atoms
~6 nm

Icosahedron
d = 4.0 \sigma
55 atoms
~1.4 nm

Cube
d = 13.2 \sigma
2744 atoms
~4.5 nm
Solvation and van der Waals Forces

Solvation Force

\[F^{\text{solv}}(\delta) = \left(\hat{r}_{AB} \cdot \left(\sum_{i} F_{A,S_i} - \sum_{i} F_{B,S_i} \right) \right) \]

Free-Energy Change

\[\Delta A_{ij} = \int_{\delta_i}^{\delta_j} F_{\text{solv}}(\delta) d\delta \]

van der Waals Force

\[F^{\text{vdw}}(\delta) = \sum_{i \in A} \sum_{j \in B} -\frac{dU_{ij}}{dr_{ij}} \cdot \hat{r}_{AB} \]

Fluid Ordering: Origin of Solvation Forces

Solvent Density Profile

Solvent ordering around solvophilic nanoparticles
Forces Depend on Particle Size and Shape......
Derjaguin Approximation for Shape Dependence: Influenced by Surface Roughness

\[
\frac{\Delta A(\delta)}{2A_C \rho_C^2} = \frac{F_{Solv}^{Solv}(\delta)}{\pi D \rho_S^2}
\]

Derjaguin Approximation Describes the Envelope

Derjaguin Approximation Works

Solvophilic

Solvophobic

\[\frac{\Delta A}{2A_C \rho_C^2} \text{ or } \frac{F_{Solv}}{\pi D \rho_S^2} \]

\[\delta/\sigma\]

\[0.5 \quad 1.5 \quad 2.5 \quad 3.5 \quad 4.5 \quad 5.5 \quad 6.5\]

Small Sphere

Large Sphere

Cube

\[\delta/\sigma\]

\[0.5 \quad 1.5 \quad 2.5 \quad 3.5 \quad 4.5 \quad 5.5 \quad 6.5\]

Small Sphere

Large Sphere

Cube

Derjaguin Approximation Works
Influence of Surface Roughness on Solvation Forces: LJ Liquid

Particles will Rotate in Solution for a Minimum Free-Energy Approach

Interestingly, Roughness Destroys Solvation Forces For Macroscopic Surfaces...
Influence of Rotation on Solvation Forces

Nanoparticles Rotate About Fixed Center of Mass

Solvophilic
Without Rotation

Solvophobic
With Rotation

F·σ/kT

δ/σ
Minimum-Energy Path for Approach of Nanocrystals

Solvation Forces can Control Alignment in Assembly

Nanoparticle Rotation Driven by Solvent Ordering

Nanoparticles Rotate to Reduce Solvent Density in the Gap

ρ / ρ_{bulk}
Applications: Aligned Nanoparticle Assemblies

Cubic Pt Nanoparticles

Nanocrystalline Au Arrays

T. Ahmadi et al., Chem. Mater. 8, 1161 (1996).

Solvation Forces Could Cause Oriented Attachment in Crystal Growth

See Also:

HRTEM Image Showing Oriented Attachment of 5 TiO$_2$ Nanoparticles
Solvation Forces can be Important!

Solvation Forces Depend on:
- particle/solvent size
- particle shape
- particle-solvent interactions

Solvation Forces Can Cause Nanoparticle Alignment in Assembly/Crystal Growth

Nanoparticle Suspensions can be Engineered......
Collaborators

Kelly Becker
Mozhgan Alimohammadi
Maria Mignogna
Derek Triplett
Yogesh Tiwary
Dr. Vishal Kopardé
Josh Howe
Ryan Muthard
David Condon
Dr. Hye-Young Kim

Alumni

Mike Merrick
Dr. Yong Qin
Dr. Radu “Alex” Miron
Dr. Jee-Ching Wang
Dr. Som Pal
Dr. Weiwei Luo

Fritz-Haber-Institut

Dr. Matthias Scheffler
Dr. Rossitza Pentcheva

PSU NIRT

Dr. Theresa Mayer
Dr. Chris Keating
Dr. Darrell Velegol

Funding

NSF ECC-0085604, DMR-9617122, IGERT DGE-9987598, DMR-0514336, NIRT CCR-0303976
ACS PRF, EPA, Alexander von Humboldt Foundation