Computational Simulation of Blast Effects on Structural Components

Daniel G. Linzell
Associate Professor
Civil and Environmental Engineering

Lyle N. Long
Distinguished Professor
Aerospace Engineering

Abner Chen
Ph.D. Candidate
Civil and Environmental Engineering

Emre Alpman
Postdoctoral Researcher
Aerospace Engineering
Acknowledgements

- Office of Naval Research
- Penn State University Applied Research Lab
- APCI
Objectives

- Detailed coupled gas/chemistry simulations of detonations
- Large scale simulations of pressure loadings using time-accurate CFD
- Fluid/structure simulations under blast/impact loadings
- Coating materials to help make structures blast/impact resistant – polyurea
Background – Blast resistant materials (polyurea)

Polyurea
- Introduced by Texaco in 1989
- Known Advantages vs. Polyurethanes (traditional coatings)

Applications
- DoD – Civil Infrastructure
- DoD – other apps
 - Army/Navy – Spray on armor (Humvees)
 - Navy – Ship hulls (U.S.S. Cole)
- Other – Civil Infrastructure
 - Rail cars
 - Water storage tanks
 - Chemical plant infrastructure

Sources:
PCI: http://www.pcimag.com/CDA/Archives/779f754db76a7010VgnVCM100000f932a8c0
DefenseReview.com: http://www.defensereview.com/article502.html,
Polymer Materials for Structural Retrofit, Knox et al., AFRL
Background – Blast resistant materials (polyurea)

- DoD applications – *Polyurea*
 - AFRL
 - ERDC-WES
 - Army
 - Navy
 - Pentagon
 - Retrofit
- Public domain?

Source: Polymer Materials for Structural Retrofit, Knox et al., AFRL; Army Times
Blast Simulation CFD Method

- Unstructured-grid, time-accurate Euler code
- Finite volume, Runge-Kutta time marching
- Code is called PUMA2
- Has been in use at Penn State for many years, thoroughly validated on a wide range of problems
Blast CFD - Assumptions

- 75 lbs. of TNT
- Explosive is spherical in geometry
- Uniform explosion
Blast CFD - Initial Pressure Profile

Initial Pressure Profile

p/p_0 vs. r/R
Blast CFD - Pressure History

Pressure Histories at Different Locations

- $r = 1\,\text{m}$
- $r = 0.5\,\text{m}$
- $r = 0.2\,\text{m}$
Blast CFD – PUMA2
Comparisons to ConWep

Over-Pressure vs. Distance (75 lbs of TNT)
Blast CFD - Simulations Including Steel Plate

- Plate Dimensions (60in by 60in)
- 75 lbs. of TNT
- Plate located approx 3 ft away from the explosive
Loading History at the Center of the Plate
Background – Fluid/structure simulations

- Commercial codes
- Interaction
 - Loosely coupled
- Mechanisms behind protection?
- Parameters to control performance?
Focus Areas – fluid/structure interaction

- Numerical fluid/structure program
 - Material models
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading

- Experimental fluid/structure program
 - Material properties
 - Validation testing
Fluid/structure interaction

- Numerical fluid/structure program
 - Material models – via literature
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading
- Experimental fluid/structure program
 - Material properties
 - Validation testing
Material model - Steel

- Steel (AISI 4340)
 - Johnson-Cook material model (Kurtaran and Eskandarian, 2003)
 - A=66.7, B=100.4, n=0.26, C=0.014, and m=1.03

\[\sigma = \left[A + B (\varepsilon^{pl})^n \right] \left[1 + C \ln (\dot{\varepsilon}^*) \right] \left[1 - T^{*m} \right] \]

- \(\varepsilon^{pl} \): equivalent plastic strain
- \(\dot{\varepsilon}^* \): normalized plastic strain rate
- \(T^* = \frac{T - T_{room}}{T_{melt} - T_{room}} \)
Material model - Polyurea

- Polyurea (APCI)
 - Mie-Gruneisen equation of state (Fuentes 2006)
 - A hydrodynamic material model
 - A function of density and internal energy

\[
P - P_H = \Gamma \rho (E_m - E_H)
\]

\[
\Gamma = \Gamma_0 \frac{\rho_0}{\rho}
\]

\[
E_H = \frac{P_H \eta}{2 \rho_0}
\]

\[
\eta = 1 - \frac{\rho_0}{\rho}
\]

\[
P_H = \frac{\rho_0 C_0^2 \eta}{(1 - s \eta)^2}
\]

\(C_0\) and \(s\) are material constants

\(\rho_0\) : reference density
\(\Gamma_0\) : material constant
Numerical program

- Abaqus - Explicit
- LS-Dyna
- PUMA2
Fluid/structure interaction

- Numerical fluid/structure program
 - Material models
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading
- Experimental fluid/structure program
 - Material properties
 - Validation testing
Numerical analysis - ABAQUS and LS-DYNA

Area of the uniform distributed pressure load

Fixed end

1 in

5 in

99 in
Pressure time-history of the impact load
Displacement

![Displacement Graph]

- ABAQUS
- LS-DYNA
Von Mises Stress

![Von Mises Stress Graph](image_url)
Internal energy

Comparison of internal energy for mesh size 1"x1"x1"

- LS-DYNA
- ABAQUS
Fluid/structure interaction

- Numerical fluid/structure program
 - Material models
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading
- Experimental fluid/structure program
 - Material properties
 - Validation testing
Numerical program – Comparison of PUMA2 & ConWep

- FEM program: LS-DYNA
- Steel plate: 60”x60”x0.25”
- Steel (AISI 4340)
 - Johnson-Cook material model – literature, no failure criterion
- Load
 - PUMA2 CFD code (complex spatial and temporal loading)
 - ConWep (Blast function provided in LS-DYNA)
Background

- CFD code, PUMA2
 - Solve Euler equations
 - Neglect viscous effect
- Blast function (ConWep)
 - U.S. Army Waterways Experiment Station
 - Empirical model
Configuration of the model

75 lb of TNT

3.2 ft

Steel plate: 60"x60"x0.25"
Comparison of displacements

The graph compares the z-displacements of PUMA2 and ConWep over time. The x-axis represents time in seconds (0 to 0.008), and the y-axis represents z-displacement in inches (-12 to 0). The PUMA2 data is shown by a solid line, while the ConWep data is depicted with a dashed line.
Comparison of von Mises stress
Fluid/structure interaction

- Numerical fluid/structure program
 - Material models
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading
- Experimental fluid/structure program
 - Material properties
 - Validation testing
Numerical program – Effect of polyurea on steel plate under blast loading

- Steel plate: 60”x60”x0.25”
- Thickness of coating: 0”, 0.25”, 0.5”
- Steel (AISI 4340)
 - Johnson-Cook material model
- Polyurea (Air Products)
 - Mie-Gruneisen Equation of State
- Load: PUMA2 CFD code (complex spatial and temporal loading)
Numerical program – Steel plate without polyurea
Numerical program – Steel plate with 0.25” thick polyurea
Numerical program – Steel plate with 0.5” thick polyurea
Deflection at the center

- No coating
- 0.25" polyurea
- 0.5" polyurea

Displacement (in) vs. Time (s)
Kinetic energy

Graph:
- **Y-axis:** Kinetic energy (lbf-in)
- **X-axis:** Time (s)
- Three lines representing different coatings:
 - **No coating**
 - **0.25" polyurea**
 - **0.5" polyurea**

Current focus areas – numerical program

- Sensitivity analyses
 - Model construction
 - Constitutive model selection – Polyurea (e.g. viscous or crushable foam vs. M-G)
- Numerical failure mode prediction
 - Coated plate
 - Pressure, temperature, impact
 - Relevant loading regimes
- Failure criteria prediction
 - Membrane action - polyurea
 - Interface failure - polyurea and steel
Fluid/structure interaction

- Numerical fluid/structure program
 - Material models
 - Comparison of ABAQUS and LS-DYNA
 - Comparison of PUMA2 and ConWep
 - Effect of polyurea on steel plate under blast loading

- Experimental fluid/structure program
 - Material properties
 - Validation testing
Experimental program

- **Material properties**
 - Characterization – steel and polyurea

- **Validation Testing**
 - Impact and/or Blast
 - Coated and uncoated
 - Varying coating thickness
 - Locations
 - PSU CITEL
 - Others
Coupon testing - Steel

- ASTM E8
- Extensometer - displacement
Results – stress vs. strain

![Graph showing stress vs. strain](image)
Material constants for JC model

- Using a least squares fitting method
 - Material constant A = 66.7 (ksi)
 - Material constant B = 100.4 (ksi)

\[
\sigma = \left[A + B (\varepsilon_{pl}^n) \right] \left[1 + C \ln (\dot{\varepsilon}^*) \right] \left[1 - T^{*m} \right]
\]
Current focus areas – experimental program

- Coupon testing – Polyurea (APCI)
- Validation testing specimen prep
- Validation testing determination and matrix development
Summary
Questions?

Contact Info

- Linzell
 - DLinzell@engr.psu.edu

- Long
 - lnl@psu.edu